13 tháng 8, 2007

Tìm hiểu phương pháp phần tử hữu hạn!

Phương pháp phần tử hữu hạnphương pháp số để giải các bài toán được mô tả bởi các phương trình vi phân riêng phần cùng với các điều kiện biên cụ thể.

Cơ sở của phương pháp này là làm rời rạc hóa các miền liên tục phức tạp của bài toán. Các miền liên tục được chia thành nhiều miền con (phần tử). Các miền này được liên kết với nhau tại các điểm nút. Trên miền con này, dạng biến phân tương đương với bài toán được giải xấp xỉ dựa trên các hàm xấp xỉ trên từng phần tử, thoả mãn điều kiện trên biên cùng với sự cân bằng và liên tục giữa các phần tử.

Về mặt toán học, phương pháp phần tử hữu hạn (PPPTHH) được sử dụng để giải gần đúng bài toán phương trình vi phân từng phần (PTVPTP) và phương trình tích phân, ví dụ như phương trình truyền nhiệt. Lời giải gần đúng được đưa ra dựa trên việc loại bỏ phương trình vi phân một cách hoàn toàn (những vấn đề về trạng thái ổn định), hoặc chuyển PTVPTP sang một phương trình vi phân thường tương đương mà sau đó được giải bằng cách sử dụng phương pháp sai phân hữu hạn, vân vân.

PPPTHH không tìm dạng xấp xỉ của hàm trên toàn miền xác định V của nó mà chỉ trong những miền con Ve (phần tử) thuộc miền xác định của hàm.Trong PPPTHH miền V được chia thành một số hữu hạn các miền con, gọi là phần tử. Các miền này liên kết với nhau tại các điểm định trước trên biên của phần tử được gọi là nút. Các hàm xấp xỉ này được biểu diễn qua các giá trị của hàm (hoặc giá trị của đạo hàm) tại các điểm nút trên phần tử. Các giá trị này được gọi là các bậc tự do của phần tử và được xem là ẩn số cần tìm của bài toán.

Trong việc giải phương trình vi phân thường , thách thức đầu tiên là tạo ra một phương trình xấp xỉ với phương trình cần được nghiên cứu, nhưng đó là ổn định số học (numerically stable), nghĩa là những lỗi trong việc nhập dữ liệu và tính toán trung gian không chồng chất và làm cho kết quả xuất ra xuất ra trở nên vô nghĩa. Có rất nhiều cách để làm việc này, tất cả đều có những ưu điểm và nhược điểm. PPPTHH là sự lựa chọn tốt cho việc giải phương trình vi phân từng phần trên những miền phức tạp (giống như những chiếc xe và những đường ống dẫn dầu) hoặc khi những yêu cầu về độ chính xác thay đổi trong toàn miền. Ví dụ, trong việc mô phỏng thời tiết trên Trái Đất, việc dự báo chính xác thời tiết trên đất liền quan trọng hơn là dự báo thời tiết cho vùng biển rộng, điều này có thể thực hiện được bằng việc sử dụng phương pháp phần tử hữu hạn.
( wiki)

Ứng dụng

Phương pháp Phần tử hữu hạn thường được dùng trong các bài toán Cơ học (cơ học kết cấu, cơ học môi trường liên tục) để xác định trường ứng suất và biến dạng của vật thể.

Ngoài ra, phương pháp phần tử hữu hạn cũng được dùng trong vật lý học để giải các phương trình sóng, như trong vật lý plasma, các bài toán về truyền nhiệt, động lực học chất lỏng, trường điện từ.

Lịch sử

Phương pháp phần tử hữu hạn được bắt nguồn từ những yêu cầu giải các bài toán phức tạp về lý thuyết đàn hồi, phân tích kết cấu trong xây dựng và kỹ thuật hàng không. Nó được bắt đầu phát triển bởi Alexander Hrennikoff (1941) và Richard Courant (1942). Mặc dù hướng tiếp cận của những người đi tiên phong là khác nhau nhưng họ đều có một quan điểm chung, đó là chia những miền liên tục thành những miền con rời rạc. Hrennikoff rời rạc những miền liên tục bằng cách sử dụng lưới tương tự, trong khi Courant chia những miền liên tục thành những miền có hình tam giác cho cách giải thứ hai của phương trình vi phân từng phần elliptic , xuất hiện từ các bài toán về xoắn của phần tử thanh hình trụ. Sự đóng góp của Courant là phát triển, thu hút một số người nhanh chóng đưa ra kết quả cho PPVPTP elliptic được phát triển bởi Rayleigh, Ritz, và Galerkin. Sự phát triển chính thức của PPPTHH được bắt đầu vào nửa sau những năm 1950 trong việc phân tích kết cấu khung máy bay và công trình xây dựng, và đã thu được nhiều kết quả ở Berkeley (xem Early Finite Element Research at Berkeley) trong những năm 1960 trong ngành xây dựng. Phương pháp này được cung cấp nền tảng toán học chặt chẽ vào năm 1973 với việc xuất bản cuốn Strang và tổng kết trong An Analysis of The Finite element Method và kể từ đó PPPTHH được tổng quát hóa thành một ngành của toán ứng dụng, một mô hình số học cho các hệ thống tự nhiên, được ứng dụng rộng rãi trong kĩ thuật, ví dụ như điện từ học động lực học chất lỏng.

Sự phát triển của PPPTHH trong cơ học kết cấu đặt cơ sở cho nguyên lý năng lượng, ví dụ như: nguyên lý công khả dĩ , PPPTHH cung cấp một cơ sở tổng quát mang tính trực quan theo quy luật tự nhiên, đó là một yêu cầu lớn đối với những kỹ sư kết cấu.

 Baì toán minh họa

Chúng ta sẽ minh họa việc sử dụng PPPTHH từ hai ví dụ mà phương pháp chung có thể là ngoại suy. Chúng ta xem như người đọc đã quen thuộc với tính toán đại số tuyến tính. Chúng ta sẽ sử dụng bài toán một chiều, tại đây, hàm f được xác định bởi u và u một hàm ẩn của x, u'' là đạo hàm cấp 2 của u theo x

\mbox{P1 }:\begin{cases} u''=f \mbox{ in } (0,1), \\ u(0)=u(1)=0, \end{cases}

Ví dụ cho bài toán hai chiều là bài toán Dirichlet

\mbox{P2 }:\begin{cases} u_{xx}+u_{yy}=f & \mbox{ in } \Omega, \\ u=0 & \mbox{ on } \partial \Omega, \end{cases}

Ở đây, miền Ω là một miền đơn liên mở trong mặt phẳng (x,y), có biên ∂Ω rất "đẹp" (ví dụ: một đa tạp trơn hoặc một đa giác), uxx và uyy là đạo hàm riêng cấp hai theo biến x và y.

Ở ví dụ P1, có thể giải trực tiếp bằng cách lấy nguyên hàm. Tuy nhiên, phương pháp này chỉ thực hiện được trong không gian một chiều và không thể giải được trong trường hợp không gian có hơn hai chiều hoặc trong bài toán u + u'' = f. Chính vì lí do này mà chúng ta sẽ phát triển phát triển PPPTHH cho trường hợp P1 và phác họa tổng quát của PPPTHH cho trường hợp P2.

Lời giải sẽ bao gồm hai bước, nó phản ánh hai bước chủ yếu phải thực hiện để giải một bài toán biên bằng PPPTHH. Ở bước đầu tiên, chúng ta sẽ biểu diễn lại bài toán biên trong dạng gần đúng của nó hoặc dạng biến phân. Rất it hoặc không có máy tính được dùng để thực hiện bước này, việc này được làm bằng tay ở trên giấy. Bước thứ hai là rời rạc hóa, dạng gần đúng được rời rạc trong một không gian hữu hạn chiều. Sau bước thứ hai này, chúng ta sẽ có biểu thức cụ thể cho toàn bộ bài toán nhưng lời giải của bài toán trong không gian hữu hạn chiều tuyến tính chỉ là lời giải gần đúng của bài toán biên. Bài toán trong không gian hữu hạn chiều này sau đó được giải bằng máy tính.

So sánh PPPTHH với phương pháp sai phân hữu hạn (PPSPHH)

PPSPHH là một phương pháp khác để giải phương trình vi phân từng phần. Sự khác nhau giữa PPPTHH và PPSPHH là:

  • PPSPHH xấp xỉ bài toán phương trình vi phân; còn PPPTHH thì xấp xỉ lời giải của bài toán này
  • Điểm đặc trưng nhất của PPPTHH là nó có khả năng áp dụng cho những bài toán hình học và những bài toán biên phức tạp với mối quan hệ rời rạc. Trong khi đó PPSPHH về căn bản chỉ áp dụng được trong dạng hình chữ nhật với mối quan hệ đơn giản, việc vận dụng kiến thức hình học trong PPPTHH là đơn giản về lý thuyết.
  • Điểm đặc trưng của phương pháp sai phân hữu hạn là có thể dễ dàng thực hiện được.
  • Trong một vài trường hợp, PPSPHH có thể xem như là một tập con của PPPTHH xấp xỉ. Việc lựa chọn hàm cơ sở là hàm không đổi từng phần hoặc là hàm delta Dirac. Trong cả hai phương pháp xấp xỉ, việc xấp xỉ được tiến hành trên toàn miền, nhưng miền đó không cần liên tục. Như một sự lựa chọn, nó có thể xác định một hàm trên một miền rời rạc, với kết quả là toán tử vi phân liên tục không sinh ra chiều dài hơn, tuy nhiên việc xấp xỉ này không phải là PPPTHH.
  • Có những lập luận để lưu ý đến cơ sở toán học của việc xấp xỉ phần tử hữu hạn trở lên đúng đắn hơn, ví dụ, bởi vì trong PPSPHH đặc điểm của việc xấp xỉ những điểm lưới còn hạn chế.
  • Kết quả của việc xấp xỉ bằng PPPTHH thường chính xác hơn PPSPHH, nhưng điều này còn phụ thuộc vào nhiều vấn đề khác và một số trường hợp đã cho kết quả trái ngược.

Nói chung, PPPTHH là một phương pháp thích hợp để phân tích các bài toán về kết cấu (giải các bài toán về biến dạng và ứng suất của vật thể dạng khối hoặc động lực học kết cấu), trong khi đó phương pháp tính trong động lực học chất lỏng có khuynh hướng sử dụng PPSPHH hoặc những phương pháp khác (như phương pháp khối lượng hữu hạn ).Những bài toán của động lực học chất lỏng thường yêu cầu phải rời rạc hóa bài toán thành một số lượng lớn những "ô vuông" hoặc những điểm lưới (hàng triệu hoặc hơn), vì vậy mà nó đòi hỏi cách giải phải đơn giản hơn để xấp xỉ các "ô vuông". Điều này đặc biệt đúng cho các bài toán về dòng chảy ngoài, giống như dòng không khí bao quanh xe hơi hoặc máy bay, hoặc việc mô phỏng thời tiết ở một vùng rộng lớn. Có rất nhiều bộ phần mềm về phương pháp phần tử hữu hạn, một số miễn phí và một số được bán.

Theo bách khoa toàn thư:
 
 
PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN :

một phương pháp gần đúng để giải một số lớp bài toán biên, có nội dung như sau: Để giải một bài toán biên trong miền W , bằng phép tam giác phân, ta chia thành một số hữu hạn các miền con W j (j = 1,..., n) sao cho hai miền con bất kì không giao nhau và chỉ có thể chung nhau đỉnh hoặc các cạnh.

  Mỗi miền con Wj được gọi là một phần tử hữu hạn (PTHH).

  Người ta tìm nghiệm xấp xỉ của bài toán biên ban đầu trong một không gian hữu hạn chiều các hàm số thoả mãn điều kiện khả vi nhất định trên toàn miền W và hạn chế của chúng trên từng PTHH Wj là các đa thức. Có thể chọn cơ sở của không gian này gồm các hàm số j1 (x),..., jn (x) có giá trị trong một số hữu hạn PTHH W j ở gần nhau. Nghiệm xấp xỉ của bài toán ban đầu được tìm dưới dạng

c1 j1 (x) + ... + cn jn (x)

trong đó các c k là các số cần tìm. Thông thường người ta đưa việc tìm các ck về việc giải một phương trình đại số với ma trận thưa (chỉ có các phần tử trên đường chéo chính và trên một số đường song song sát với đường chéo chính là khác không) nên dễ giải. Có thể lấy cạnh của các PTHH là đường thẳng hoặc đường cong để xấp xỉ các miền có dạng hình học phức tạp. PPPTHH có thể dùng để giải gần đúng các bài toán biên tuyến tính, phi tuyến và các bất phương trình.

 Theo PPPTHH, trong cơ học, vật thể được chia thành những phần tử nhỏ có kích thước hữu hạn, liên kết với nhau tại một số hữu hạn các điểm trên biên (gọi là các điểm nút). Các đại lượng cần tìm ở nút sẽ là ẩn số của bài toán (gọi là các ẩn số nút). Tải trọng trên các phần tử cũng được đưa về các nút.

 Trong mỗi phần tử, đại lượng cần tìm được xấp xỉ bằng những biểu thức đơn giản và có thể biểu diễn hoàn toàn qua các ẩn số nút. Dựa trên nguyên lí năng lượng, có thể thiết lập được các phương trình đại số diễn tả quan hệ giữa các ẩn số nút và tải trọng nút của một phần tử. Tập hợp các phần tử theo điều kiện liên tục sẽ nhận được hệ phương trình đại số đối với các ẩn số nút của toàn vật thể.

 Với sự hỗ trợ của máy tính điện tử, PPPTHH đang được sử dụng rộng rãi và có hiệu quả trong nhiều lĩnh vực như lí thuyết đàn hồi và dẻo, cơ học chất lỏng, cơ học vật rắn, cơ học thiên thể, khí tượng thuỷ văn, vv.
Sách hay :

Cài đặt Ansys

1. Chép thý mục CRACK trên CD vào ổ cứng (VD: C:\ANSYS\CRACK)

2. Chạy file WinHostID.exe ðể lấy HOSTNAME và FlexID

3. Mở file Ansys.dat trong thý mục Crack và sửa nhý sau:

Thay SERVER host 000000000000 1055 bằng SERVER HOSTNAME FlexID 1055 (VD: SERVER PhamQuocHung 00904b7350ad 1055), rồi ðóng file lại.

4. Chạy file Keygen.bat ðể tạo file License.dat

5. Chạy file SETUP.exe ðể cài ðặt & tiến hành cài ðặt b

ình thýờng

Giới thiệu thêm về Pro/E

Một trong những phần mềm có được những tính năng trên như Catia, Unigraphics NX, I-deas, Pro/Engineer Wildfire….

Hiện tại, thị trường phần mềm đồ họa trên thế giới rất đa dạng, việc lựa chọn phần mềm nào để phục vụ tốt cho công việc thực sự là một điều khó khăn. Tuy nhiên, có năm chỉ tiêu cần biết khi chọn phần mềm là:

-          Tính linh hoạt

-          Tính khả thi

-          Tính đơn giản

-          Tính biểu diễn được

-          Tính kinh tế.

Một trong những phần mềm có được những tính năng trên như Catia, Unigraphics NX, I-deas, Pro/Engineer Wildfire….Đây là bốn phần mềm được đánh giá là rất mạnh và rất nổi tiếng trong lĩnh vực CAD/CAM/CNC. Tùy vào thế mạnh của mỗi phần mềm mà chúng có những ứng dụng chuyên biệt: Catia, Unigraphics NX phục vụ triệt để cho ngành công nghiệp hàng không, ôtô, tàu thủy. Pro/Engineer phục vụ rất tốt cho ngành cơ khí khuôn mẫu (thiết kế và gia công) như khuôn dập, khuôn rèn, khuôn nhựa…. Pro/E có một lợi thế là giá rẻ nên đã chiếm lĩnh các thị trường hạng trung và cao.

Hiện nay, số người sử dụng Pro/E trên thế giới rất nhiều, kể cả Việt Nam (chiếm trên 75%) nên chúng ta sẽ có cơ hội học hỏi, trao đổi lẫn nhau những vấn đề liên quan đến CAD/CAM với thế giới bên ngoài. Do vậy, việc chọn học Pro/E là một hướng đi tốt cho chúng ta trước khi vào nghề và cũng là cách duy nhất để chúng ta nắm bắt, đuổi kịp trình độ công nghệ của thế giới

Pro/E là phần mềm của hãng Prametric Technology, Corp. Một phần mềm thiết kế theo tham số, có nhiều tính năng rất mạnh trong lĩnh vực CAD/CAM/CAE, nó mang lại cho chúng ta các khả năng như:

-          Mô hình hóa trực tiếp vật thể rắn

-          Tạo các module bằng các khái niệm và phần tử thiết kế.

-          Thiết kế thông số.

-          Sử dụng cơ sở dữ liệu thống nhất.

-          Có khả năng mô phỏng động học, động lực học kết cấu cơ khí.(Pro/Engineer Wildfire 3.0).

Phần mềm Pro/Engineer có các modu le sau:

·          Pro/ASSEMBLY: tạo điều kiện thiết lập dễ dàng chi tiết vào hệ thống và dưới hệ thống. Nó hỗ trợ cho phần lắp ráp và lắp ráp nhóm, giải quyết tình huống xung đột, thiết kế thay đổi…

·          Pro/DETAIL: module tạo trực tiếp mô hình 3D của các bản vẽ thiết kế chuẩn cho phân xưởng và chế tạo trong đó đảm bảo liên kết 2 phía giữa các bản vẽ và module 3D.

·          Pro/SHEETMETAL: module hỗ trợ thiết kế những chi tiết có dạng tấm, vỏ, và hỗ trợ cho việc tạo lập các chi tiết phát triển kể cả chuẩn bị cho chương trình NC cho sản xuất.

·          Pro/SURFACE: module hỗ trợ vẽ, tạo các mặt tự do (Free Form), xử lý các mặt cong và bề mặt phức tạp.

·          Pro/MANUFACTURING: bao gồm dữ liệu NC, mô phỏng, format d liệu CL, thư viện các phần tử.

·          Pro/MESH: hỗ trợ tái tạo mạng lưới cho việc phân tích phần tử hữu hạn (FEA), xác định điều kiện biên, gắn liền với ANSYS, PATRAN, NASTRAN, ABAQUS, SUPERTAB và COSMOS/M.

·          Pro/MECHANICA: Mô phỏng động học, kiểm nghiệm ứng suất, chuyển vị, biến dạng tuyến tính và phi tuyến, xác định và dự đoán khả năng phá hủy vật liệu…

·          Pro/INTERFACE: tạo điều kiện gắn với các hệ CAD khác như: iges, dxf, vdafs, render, SLA…

·          Pro/PROJECT: xác định để điều khiển dự án thiết kế và tổ hợp một số đội thiết kế và lập dự án.

·          Pro/FEATURE: mở rộng khả năng thiết lập những phần tử thiết kế bằng thư viện của các bộ phận, nhóm, tái tạo các hình dạng chuẩn và dưới nhóm.

·          Pro/DESIGN: hỗ trợ thành lập mô hình 3D, sơ đồ khối, xây dựng kế hoạch thiết kế và mối quan hệ phụ thuộc, giúp cho sự phân tích nhanh và hiệu quả và sắp xếp phương án.

·          Pro/LIBRARY: module chứa thư viện rộng lớn của các phần tử trên chuẩn (chi tiết, phần tử thiết kế tiêu chuẩn, dụng cụ, khớp nối…), có thể bổ sung hoặc hiệu chỉnh.

·          Pro/VIEW: module tạo điều kiện kiểm tra mô hình hóa chi tiết và hệ thống từ một hướng quan sát bất kì, phóng độn, ảo ảnh. Sử dụng để có cái nhìn nhanh tổng thể để đạt được kết quả hoặc mục đích phòng ngừa.

·          Pro/DRAFT: module hỗ trợ biểu diễn 2D, tạo điều kiện đọc bản vẽ của các hệ CAD khác và bổ sung module 3D về thiết kế thông số.

·          Pro/NLO: module hỗ trợ cho công việc trong mạng cục bộ, hòa hợp với các module khác của hệ.

·          Pro/MOLD: module thiết kế khu ôn.

·          Pro/DEVELOP (Pro/PROGRAM): modu le hỗ trợ việc lập trình ứng dụng riêng. Chứa các thư viện của hàm số C, thư viện chương trình con của ngôn ngữ lập trình FORTRAN và đặc biệt tiếp cận được với cấu trúc thiết lập các hệ thống và cấu trúc dữ liệu của hệ thống. Ngoài ra, Pro/E còn có Pro/CASTING, Pro/LEGACY, Pro/TOOLKIT, Pro/PiPe…

Với những tính năng đã giới thiệu ở trên cho thấy: "Pro/Engineer là một phần mềm CAD/CAM/CAE rất mạnh, có khả năng mô hình hóa các chi tiết phức tạp như các loại máy xúc, máy đào đất, ô tô, các biến dạng vỏ tàu thủy… khả năng lắp ráp lớn và rất tối ưu trong thiết kế".